The Stacks project

Lemma 27.10.7. Let $S$ be a graded ring. Set $X = \text{Proj}(S)$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Set $M = \bigoplus _{n \in \mathbf{Z}} \Gamma (X, \mathcal{F}(n))$ as a graded $S$-module, using (27.10.1.4) and (27.10.1.3). Then there is a canonical $\mathcal{O}_ X$-module map

\[ \widetilde{M} \longrightarrow \mathcal{F} \]

functorial in $\mathcal{F}$ such that the induced map $M_0 \to \Gamma (X, \mathcal{F})$ is the identity.

Proof. Let $f \in S$ be homogeneous of degree $d > 0$. Recall that $\widetilde{M}|_{D_{+}(f)}$ corresponds to the $S_{(f)}$-module $M_{(f)}$ by Lemma 27.8.4. Thus we can define a canonical map

\[ M_{(f)} \longrightarrow \Gamma (D_+(f), \mathcal{F}),\quad m/f^ n \longmapsto m|_{D_+(f)} \otimes f|_{D_+(f)}^{-n} \]

which makes sense because $f|_{D_+(f)}$ is a trivializing section of the invertible sheaf $\mathcal{O}_ X(d)|_{D_+(f)}$, see Lemma 27.10.2 and its proof. Since $\widetilde{M}$ is quasi-coherent, this leads to a canonical map

\[ \widetilde{M}|_{D_+(f)} \longrightarrow \mathcal{F}|_{D_+(f)} \]

via Schemes, Lemma 26.7.1. We obtain a global map if we prove that the displayed maps glue on overlaps. Proof of this is omitted. We also omit the proof of the final statement. $\square$


Comments (2)

Comment #7541 by old friend on

It would be helpful to cite equation (0AG2) when saying "the induced map is identity" which is confusing as written. Instead, replace it with "the induced map (see tag(0AG2)) is identity"

There are also:

  • 3 comment(s) on Section 27.10: Invertible sheaves on Proj

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0B5I. Beware of the difference between the letter 'O' and the digit '0'.