Lemma 54.9.2. In Situation 54.9.1. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Then
$H^ p(X, \mathcal{F}) = 0$ for $p \not\in \{ 0, 1\} $, and
$H^1(X, \mathcal{F}) = 0$ if $\mathcal{F}$ is globally generated.
Lemma 54.9.2. In Situation 54.9.1. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Then
$H^ p(X, \mathcal{F}) = 0$ for $p \not\in \{ 0, 1\} $, and
$H^1(X, \mathcal{F}) = 0$ if $\mathcal{F}$ is globally generated.
Proof. Part (1) follows from Cohomology of Schemes, Lemma 30.20.9. If $\mathcal{F}$ is globally generated, then there is a surjection $\bigoplus _{i \in I} \mathcal{O}_ X \to \mathcal{F}$. By part (1) and the long exact sequence of cohomology this induces a surjection on $H^1$. Since $H^1(X, \mathcal{O}_ X) = 0$ as $S$ has a rational singularity, and since $H^1(X, -)$ commutes with direct sums (Cohomology, Lemma 20.19.1) we conclude. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)