Lemma 31.2.8. Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. If $U \subset X$ is open and $\text{Ass}(\mathcal{F}) \subset U$, then $\Gamma (X, \mathcal{F}) \to \Gamma (U, \mathcal{F})$ is injective.
Proof. Let $s \in \Gamma (X, \mathcal{F})$ be a section which restricts to zero on $U$. Let $\mathcal{F}' \subset \mathcal{F}$ be the image of the map $\mathcal{O}_ X \to \mathcal{F}$ defined by $s$. Then $\text{Supp}(\mathcal{F}') \cap U = \emptyset $. On the other hand, $\text{Ass}(\mathcal{F}') \subset \text{Ass}(\mathcal{F})$ by Lemma 31.2.4. Since also $\text{Ass}(\mathcal{F}') \subset \text{Supp}(\mathcal{F}')$ (Lemma 31.2.3) we conclude $\text{Ass}(\mathcal{F}') = \emptyset $. Hence $\mathcal{F}' = 0$ by Lemma 31.2.6. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #3570 by Laurent Moret-Bailly on
Comment #3694 by Johan on
There are also: