Lemma 43.23.5. Let $V$ be a vector space. Let $G = \text{PGL}(V)$. Then $G \times \mathbf{P}(V) \to \mathbf{P}(V)$ is doubly transitive.
Proof. Omitted. Hint: This follows from the fact that $\text{GL}(V)$ acts doubly transitive on pairs of linearly independent vectors. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: