The Stacks project

Lemma 43.16.5. In Lemma 43.16.3 assume that the local ring $\mathcal{O}_{W, \xi }$ is Cohen-Macaulay. Then we have

\[ e(X, V \cdot W, Z) = \text{length}_{\mathcal{O}_{X, \xi }} (\mathcal{O}_{W, \xi }/ f_1\mathcal{O}_{W, \xi } + \ldots + f_ c\mathcal{O}_{W, \xi }). \]

Proof. This follows immediately from Lemma 43.16.1. Alternatively, we can deduce it from Lemma 43.16.3. Namely, by Algebra, Lemma 10.104.2 we see that $f_1, \ldots , f_ c$ is a regular sequence in $\mathcal{O}_{W, \xi }$. Then Algebra, Lemma 10.69.2 shows that $f_1, \ldots , f_ c$ is a quasi-regular sequence. This easily implies the length of $\mathcal{O}_{W, \xi }/(f_1, \ldots , f_ c)^ t$ is

\[ {c + t \choose c} \text{length}_{\mathcal{O}_{X, \xi }} (\mathcal{O}_{W, \xi }/ f_1\mathcal{O}_{W, \xi } + \ldots + f_ c\mathcal{O}_{W, \xi }). \]

Looking at the leading coefficient we conclude. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0B06. Beware of the difference between the letter 'O' and the digit '0'.