Lemma 43.15.2. Let $A$ be a Noetherian local ring. Let $I \subset A$ be an ideal of definition. Let $0 \to M' \to M \to M'' \to 0$ be a short exact sequence of finite $A$-modules. Let $d \geq \dim (\text{Supp}(M))$. Then
\[ e_ I(M, d) = e_ I(M', d) + e_ I(M'', d) \]
Comments (0)
There are also: