Lemma 43.7.1. Let $f : X \to Y$ be a flat morphism of varieties. Set $r = \dim (X) - \dim (Y)$. Then $f^*[\mathcal{F}]_ k = [f^*\mathcal{F}]_{k + r}$ if $\mathcal{F}$ is a coherent sheaf on $Y$ and the dimension of the support of $\mathcal{F}$ is at most $k$.
43.7 Flat pullback
Suppose that $f : X \to Y$ is a flat morphism of varieties. By Morphisms, Lemma 29.28.2 every fibre of $f$ has dimension $r = \dim (X) - \dim (Y)$1. Let $Z \subset X$ be a $k$-dimensional closed subvariety. We define $f^*[Z]$ to be the $(k + r)$-cycle associated to the scheme theoretic inverse image: $f^*[Z] = [f^{-1}(Z)]_{k + r}$. Let $\alpha = \sum n_ i [Z_ i]$ be a $k$-cycle on $Y$. The pullback of $\alpha $ is the sum $f^* \alpha = \sum n_ i f^*[Z_ i]$ where each $f^*[Z_ i]$ is defined as above. This defines a homomorphism
See Chow Homology, Section 42.14.
Proof. See Chow Homology, Lemma 42.14.4. $\square$
Lemma 43.7.2. Let $f : X \to Y$ and $g : Y \to Z$ be flat morphisms of varieties. Then $g \circ f$ is flat and $f^* \circ g^* = (g \circ f)^*$ as maps $Z_ k(Z) \to Z_{k + \dim (X) - \dim (Z)}(X)$.
Proof. Special case of Chow Homology, Lemma 42.14.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #8538 by Minki Lee on
Comment #9124 by Stacks project on