Lemma 47.16.1. Let $(A, \mathfrak m, \kappa ) \to (B, \mathfrak m', \kappa ')$ be a finite local map of Noetherian local rings. Let $\omega _ A^\bullet $ be a normalized dualizing complex. Then $\omega _ B^\bullet = R\mathop{\mathrm{Hom}}\nolimits (B, \omega _ A^\bullet )$ is a normalized dualizing complex for $B$.
Proof. By Lemma 47.15.8 the complex $\omega _ B^\bullet $ is dualizing for $B$. We have
by Lemma 47.13.1. Since $\kappa '$ is isomorphic to a finite direct sum of copies of $\kappa $ as an $A$-module and since $\omega _ A^\bullet $ is normalized, we see that this complex only has cohomology placed in degree $0$. Thus $\omega _ B^\bullet $ is a normalized dualizing complex as well. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)