Lemma 31.2.11. Let $X$ be a locally Noetherian scheme. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of quasi-coherent $\mathcal{O}_ X$-modules. Assume $\mathcal{F}$ is coherent and that for every $x \in X$ one of the following happens
$\mathcal{F}_ x \to \mathcal{G}_ x$ is an isomorphism, or
$\text{depth}(\mathcal{F}_ x) \geq 2$ and $x \not\in \text{Ass}(\mathcal{G})$.
Then $\varphi $ is an isomorphism.
Comments (0)
There are also: