Lemma 15.124.9. Let $R$ be a PID. Every finite $R$-module $M$ is of isomorphic to a module of the form
for some $r, n \geq 0$ and $f_1, \ldots , f_ n \in R$ nonzero.
Lemma 15.124.9. Let $R$ be a PID. Every finite $R$-module $M$ is of isomorphic to a module of the form
for some $r, n \geq 0$ and $f_1, \ldots , f_ n \in R$ nonzero.
Proof. A PID is a Noetherian Bézout ring. By Lemma 15.124.8 it suffices to prove the result if $M$ is torsion. Since $M$ is finite, this means that the annihilator of $M$ is nonzero. Say $fM = 0$ for some $f \in R$ nonzero. Then we can think of $M$ as a module over $R/fR$. Since $R/fR$ is Noetherian of dimension $0$ (small detail omitted) we see that $R/fR = \prod R_ j$ is a finite product of Artinian local rings $R_ i$ (Algebra, Proposition 10.60.7). Each $R_ i$, being a local ring and a quotient of a PID, is a generalized valuation ring in the sense of Lemma 15.124.2 (small detail omitted). Write $M = \prod M_ j$ with $M_ j = e_ j M$ where $e_ j \in R/fR$ is the idempotent corresponding to the factor $R_ j$. By Lemma 15.124.3 we see that $M_ j = \bigoplus _{i = 1, \ldots , n_ j} R_ j/\overline{f}_{ji}R_ j$ for some $\overline{f}_{ji} \in R_ j$. Choose lifts $f_{ji} \in R$ and choose $g_{ji} \in R$ with $(g_{ji}) = (f_ j, f_{ji})$. Then we conclude that
as an $R$-module which finishes the proof. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #6339 by comment_bot on
Comment #6440 by Johan on