Lemma 87.16.4. Let $S$ be a scheme. Let $X \to Z$ and $Y \to Z$ be morphisms of formal algebraic spaces over $S$. Assume $Z$ separated.
If $X$ and $Y$ are affine formal algebraic spaces, then so is $X \times _ Z Y$.
If $X$ and $Y$ are McQuillan affine formal algebraic spaces, then so is $X \times _ Z Y$.
If $X$, $Y$, and $Z$ are McQuillan affine formal algebraic spaces corresponding to the weakly admissible topological $S$-algebras $A$, $B$, and $C$, then $X \times _ Z Y$ corresponds to $A \widehat{\otimes }_ C B$.
Comments (2)
Comment #1559 by Matthew Emerton on
Comment #1578 by Johan on