The Stacks project

Lemma 88.9.1. Let $A$ be a Noetherian ring and $I \subset A$ an ideal. Let $J \subset A$ be a nilpotent ideal. Consider a commutative diagram

\[ \xymatrix{ C \ar[r] & C_0 \ar@{=}[r] & C/JC \\ & B_0 \ar[u] \\ A \ar[r] \ar[uu] & A_0 \ar[u] \ar@{=}[r] & A/J } \]

whose vertical arrows are of finite type such that

  1. $\mathop{\mathrm{Spec}}(C) \to \mathop{\mathrm{Spec}}(A)$ is étale over $\mathop{\mathrm{Spec}}(A) \setminus V(I)$,

  2. $\mathop{\mathrm{Spec}}(B_0) \to \mathop{\mathrm{Spec}}(A_0)$ is étale over $\mathop{\mathrm{Spec}}(A_0) \setminus V(IA_0)$, and

  3. $B_0 \to C_0$ is étale and induces an isomorphism $B_0/IB_0 = C_0/IC_0$.

Then we can fill in the diagram above to a commutative diagram

\[ \xymatrix{ C \ar[r] & C/JC \\ B \ar[u] \ar[r] & B_0 \ar[u] \\ A \ar[r] \ar[u] & A/J \ar[u] } \]

with $A \to B$ of finite type, $B/JB = B_0$, $B \to C$ étale, and $\mathop{\mathrm{Spec}}(B) \to \mathop{\mathrm{Spec}}(A)$ étale over $\mathop{\mathrm{Spec}}(A) \setminus V(I)$.

Proof. Set $X = \mathop{\mathrm{Spec}}(A)$, $X_0 = \mathop{\mathrm{Spec}}(A_0)$, $Y_0 = \mathop{\mathrm{Spec}}(B_0)$, $Z = \mathop{\mathrm{Spec}}(C)$, $Z_0 = \mathop{\mathrm{Spec}}(C_0)$. Furthermore, denote $U \subset X$, $U_0 \subset X_0$, $V_0 \subset Y_0$, $W \subset Z$, $W_0 \subset Z_0$ the complement of the vanishing set of $I$. Here is a picture to help visualize the situation:

\[ \xymatrix{ Z \ar[dd] & Z_0 \ar[l] \ar[d] \\ & Y_0 \ar[d] \\ X & X_0 \ar[l] } \quad \quad \quad \xymatrix{ W \ar[dd] & W_0 \ar[l] \ar[d] \\ & V_0 \ar[d] \\ U & U_0 \ar[l] } \]

The conditions in the lemma guarantee that

\[ \xymatrix{ W_0 \ar[r] \ar[d] & Z_0 \ar[d] \\ V_0 \ar[r] & Y_0 } \]

is an elementary distinguished square, see Derived Categories of Spaces, Definition 75.9.1. In addition we know that $W_0 \to U_0$ and $V_0 \to U_0$ are étale. The morphism $X_0 \subset X$ is a finite order thickening as $J$ is assumed nilpotent. By the topological invariance of the étale site we can find a unique étale morphism $V \to X$ of schemes with $V_0 = V \times _ X X_0$ and we can lift the given morphism $W_0 \to V_0$ to a unique morphism $W \to V$ over $X$. See Étale Morphisms, Theorem 41.15.2. Since $W_0 \to V_0$ is separated, the morphism $W \to V$ is separated too, see for example More on Morphisms, Lemma 37.10.3. By Pushouts of Spaces, Lemma 81.9.2 we can construct an elementary distinguished square

\[ \xymatrix{ W \ar[r] \ar[d] & Z \ar[d] \\ V \ar[r] & Y } \]

in the category of algebraic spaces over $X$. Since the base change of an elementary distinguished square is an elementary distinguished square (Derived Categories of Spaces, Lemma 75.9.2) we see that

\[ \xymatrix{ W_0 \ar[r] \ar[d] & Z_0 \ar[d] \\ V_0 \ar[r] & Y \times _ X X_0 } \]

is an elementary distinguished square. It follows that there is a unique isomorphism $Y \times _ X X_0 = Y_0$ compatible with the two squares involving these spaces because elementary distinguished squares are pushouts (Pushouts of Spaces, Lemma 81.9.1). It follows that $Y$ is affine by Limits of Spaces, Proposition 70.15.2. Write $Y = \mathop{\mathrm{Spec}}(B)$. It is clear that $B$ fits into the desired diagram and satisfies all the properties required of it. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ALT. Beware of the difference between the letter 'O' and the digit '0'.