Lemma 110.12.3. Let $R$ be a countable ring. Then $R$ is coherent if and only if $R^\mathbf {N}$ is a flat $R$-module.
Proof. If $R$ is coherent, then $R^\mathbf {N}$ is a flat module by Algebra, Proposition 10.90.6. Assume $R^\mathbf {N}$ is flat. Let $I \subset R$ be a finitely generated ideal. To prove the lemma we show that $I$ is finitely presented as an $R$-module. Namely, the map $I \otimes _ R R^\mathbf {N} \to R^\mathbf {N}$ is injective as $R^\mathbf {N}$ is flat and its image is $I^\mathbf {N}$ by Lemma 110.12.1. Thus we conclude by Lemma 110.12.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: