Lemma 87.15.1. Let $S$ be a scheme. Let $\{ X_ i \to X\} _{i \in I}$ be a family of maps of sheaves on $(\mathit{Sch}/S)_{fppf}$. Assume (a) $X_ i$ is a formal algebraic space over $S$, (b) $X_ i \to X$ is representable by algebraic spaces and étale, and (c) $\coprod X_ i \to X$ is a surjection of sheaves. Then $X$ is a formal algebraic space over $S$.
Proof. For each $i$ pick $\{ X_{ij} \to X_ i\} _{j \in J_ i}$ as in Definition 87.11.1. Then $\{ X_{ij} \to X\} _{i \in I, j \in J_ i}$ is a family as in Definition 87.11.1 for $X$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)