The Stacks project

Lemma 87.9.3. Let $X_\lambda , \lambda \in \Lambda $ and $X = \mathop{\mathrm{colim}}\nolimits X_\lambda $ be as in Definition 87.9.1. Then $X_\lambda \to X$ is representable and a thickening.

Proof. The statement makes sense by the discussion in Spaces, Section 65.3 and 65.5. By Lemma 87.9.2 the morphisms $X_\lambda \to X$ are representable. Given $U \to X$ where $U$ is a scheme, then the discussion following Definition 87.9.1 shows that Zariski locally on $U$ the morphism factors through some $X_\mu $ with $\lambda \leq \mu $. In this case $U \times _ X X_\lambda = U \times _{X_\mu } X_\lambda $ so that $U \times _ X X_\lambda \to U$ is a base change of the thickening $X_\lambda \to X_\mu $. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AI9. Beware of the difference between the letter 'O' and the digit '0'.