Lemma 74.8.3. Let $S$ be a scheme. Let
\[ \xymatrix{ X \ar[rr]_ f \ar[rd]_ p & & Y \ar[dl]^ q \\ & B } \]
be a commutative diagram of morphisms of algebraic spaces over $S$. Assume that
$f$ is surjective, and syntomic (resp. smooth, resp. étale),
$p$ is syntomic (resp. smooth, resp. étale).
Then $q$ is syntomic (resp. smooth, resp. étale).
Proof.
We deduce this from the analogue for schemes. Namely, the problem is étale local on $B$ and $Y$ (Morphisms of Spaces, Lemmas 67.36.4, 67.37.4, and 67.39.2). Hence we may assume that $B$ and $Y$ are affine schemes. Since $|X| \to |Y|$ is open (Morphisms of Spaces, Lemma 67.30.6), we can choose an affine scheme $U$ and an étale morphism $U \to X$ such that the composition $U \to Y$ is surjective. In this case the result follows from Descent, Lemma 35.14.4.
$\square$
Comments (0)