Lemma 15.121.2. A regular local ring is a UFD.
Proof. Recall that a regular local ring is a domain, see Algebra, Lemma 10.106.2. We will prove the unique factorization property by induction on the dimension of the regular local ring $R$. If $\dim (R) = 0$, then $R$ is a field and in particular a UFD. Assume $\dim (R) > 0$. Let $x \in \mathfrak m$, $x \not\in \mathfrak m^2$. Then $R/(x)$ is regular by Algebra, Lemma 10.106.3, hence a domain by Algebra, Lemma 10.106.2, hence $x$ is a prime element. Let $\mathfrak p \subset R$ be a height $1$ prime. We have to show that $\mathfrak p$ is principal, see Algebra, Lemma 10.120.6. We may assume $x \not\in \mathfrak p$, since if $x \in \mathfrak p$, then $\mathfrak p = (x)$ and we are done. For every nonmaximal prime $\mathfrak q \subset R$ the local ring $R_\mathfrak q$ is a regular local ring, see Algebra, Lemma 10.110.6. By induction we see that $\mathfrak pR_\mathfrak q$ is principal. In particular, the $R_ x$-module $\mathfrak p_ x = \mathfrak pR_ x \subset R_ x$ is a finitely presented $R_ x$-module whose localization at any prime is free of rank $1$. By Algebra, Lemma 10.78.2 we see that $\mathfrak p_ x$ is an invertible $R_ x$-module. By Lemma 15.121.1 we see that $\mathfrak p_ x = (y)$ for some $y \in R_ x$. We can write $y = x^ e f$ for some $f \in \mathfrak p$ and $e \in \mathbf{Z}$. Factor $f = a_1 \ldots a_ r$ into irreducible elements of $R$ (Algebra, Lemma 10.120.3). Since $\mathfrak p$ is prime, we see that $a_ i \in \mathfrak p$ for some $i$. Since $\mathfrak p_ x = (y)$ is prime and $a_ i | y$ in $R_ x$, it follows that $\mathfrak p_ x$ is generated by $a_ i$ in $R_ x$, i.e., the image of $a_ i$ in $R_ x$ is prime. As $x$ is a prime element, we find that $a_ i$ is prime in $R$ by Algebra, Lemma 10.120.7. Since $(a_ i) \subset \mathfrak p$ and $\mathfrak p$ has height $1$ we conclude that $(a_ i) = \mathfrak p$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: