The Stacks project

Lemma 54.2.1. Let $\varphi : R[x]/(x^ p - a) \to R[y]/(y^ p - b)$ be an $R$-algebra homomorphism. Then $\text{Tr}_ x = \text{Tr}_ y \circ \varphi $.

Proof. Say $\varphi (x) = \lambda _0 + \lambda _1 y + \ldots + \lambda _{p - 1}y^{p - 1}$ with $\lambda _ i \in R$. The condition that mapping $x$ to $\lambda _0 + \lambda _1 y + \ldots + \lambda _{p - 1}y^{p - 1}$ induces an $R$-algebra homomorphism $R[x]/(x^ p - a) \to R[y]/(y^ p - b)$ is equivalent to the condition that

\[ a = \lambda _0^ p + \lambda _1^ p b + \ldots + \lambda _{p - 1}^ pb^{p - 1} \]

in the ring $R$. Consider the polynomial ring

\[ R_{univ} = \mathbf{F}_ p[b, \lambda _0, \ldots , \lambda _{p - 1}] \]

with the element $a = \lambda _0^ p + \lambda _1^ p b + \ldots + \lambda _{p - 1}^ pb^{p - 1}$ Consider the universal algebra map $\varphi _{univ} : R_{univ}[x]/(x^ p - a) \to R_{univ}[y]/(y^ p - b)$ given by mapping $x$ to $\lambda _0 + \lambda _1 y + \ldots + \lambda _{p - 1}y^{p - 1}$. We obtain a canonical map

\[ R_{univ} \longrightarrow R \]

sending $b, \lambda _ i$ to $b, \lambda _ i$. By construction we get a commutative diagram

\[ \xymatrix{ R_{univ}[x]/(x^ p - a) \ar[r] \ar[d]_{\varphi _{univ}} & R[x]/(x^ p - a) \ar[d]^\varphi \\ R_{univ}[y]/(y^ p - b) \ar[r] & R[y]/(y^ p - b) } \]

and the horizontal arrows are compatible with the trace maps. Hence it suffices to prove the lemma for the map $\varphi _{univ}$. Thus we may assume $R = \mathbf{F}_ p[b, \lambda _0, \ldots , \lambda _{p - 1}]$ is a polynomial ring. We will check the lemma holds in this case by evaluating $\text{Tr}_ y(\varphi (x)^ i\text{d}\varphi (x))$ for $i = 0 , \ldots , p - 1$.

The case $0 \leq i \leq p - 2$. Expand

\[ (\lambda _0 + \lambda _1 y + \ldots + \lambda _{p - 1}y^{p - 1})^ i (\lambda _1 + 2 \lambda _2 y + \ldots + (p - 1)\lambda _{p - 1}y^{p - 2}) \]

in the ring $R[y]/(y^ p - b)$. We have to show that the coefficient of $y^{p - 1}$ is zero. For this it suffices to show that the expression above as a polynomial in $y$ has vanishing coefficients in front of the powers $y^{pk - 1}$. Then we write our polynomial as

\[ \frac{\text{d}}{(i + 1)\text{d}y} (\lambda _0 + \lambda _1 y + \ldots + \lambda _{p - 1}y^{p - 1})^{i + 1} \]

and indeed the coefficients of $y^{kp - 1}$ are all zero.

The case $i = p - 1$. Expand

\[ (\lambda _0 + \lambda _1 y + \ldots + \lambda _{p - 1}y^{p - 1})^{p - 1} (\lambda _1 + 2 \lambda _2 y + \ldots + (p - 1)\lambda _{p - 1}y^{p - 2}) \]

in the ring $R[y]/(y^ p - b)$. To finish the proof we have to show that the coefficient of $y^{p - 1}$ times $\text{d}b$ is $\text{d}a$. Here we use that $R$ is $S/pS$ where $S = \mathbf{Z}[b, \lambda _0, \ldots , \lambda _{p - 1}]$. Then the above, as a polynomial in $y$, is equal to

\[ \frac{\text{d}}{p\text{d}y} (\lambda _0 + \lambda _1 y + \ldots + \lambda _{p - 1}y^{p - 1})^ p \]

Since $\frac{\text{d}}{\text{d}y}(y^{pk}) = pk y^{pk - 1}$ it suffices to understand the coefficients of $y^{pk}$ in the polynomial $(\lambda _0 + \lambda _1 y + \ldots + \lambda _{p - 1}y^{p - 1})^ p$ modulo $p$. The sum of these terms gives

\[ \lambda _0^ p + \lambda _1^ py^ p + \ldots + \lambda _{p - 1}^ py^{p(p - 1)} \bmod p \]

Whence we see that we obtain after applying the operator $\frac{\text{d}}{p\text{d}y}$ and after reducing modulo $y^ p - b$ the value

\[ \lambda _1^ p + 2\lambda _2^ pb + \ldots + (p - 1)\lambda _{p - 1}b^{p - 2} \]

for the coefficient of $y^{p - 1}$ we wanted to compute. Now because $a = \lambda _0^ p + \lambda _1^ p b + \ldots + \lambda _{p - 1}^ pb^{p - 1}$ in $R$ we obtain that

\[ \text{d}a = (\lambda _1^ p + 2 \lambda _2^ p b + \ldots + (p - 1) \lambda _{p - 1}^ p b^{p - 2}) \text{d}b \]

in $R$. This proves that the coefficient of $y^{p - 1}$ is as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ADZ. Beware of the difference between the letter 'O' and the digit '0'.