Definition 74.22.9. With $\mathcal{U}' = \{ X'_ i \to X'\} _{i \in I'}$, $\mathcal{U} = \{ X_ i \to X\} _{i \in I}$, $\alpha : I' \to I$, $g : X' \to X$, and $g_ i : X'_ i \to X_{\alpha (i)}$ as in Lemma 74.22.8 the functor
\[ (V_ i, \varphi _{ij}) \longmapsto (g_ i^*V_{\alpha (i)}, (g_ i \times g_ j)^*\varphi _{\alpha (i) \alpha (j)}) \]
constructed in that lemma is called the pullback functor on descent data.
Comments (0)