Exercise 111.57.1 (Definitions). Let $(X, \mathcal{O}_ X)$ be a scheme. Provide definitions of the italicized concepts.
the local ring of $X$ at a point $x$,
a quasi-coherent sheaf of $\mathcal{O}_ X$-modules,
a coherent sheaf of $\mathcal{O}_ X$-modules (please assume $X$ is locally Noetherian,
an affine open of $X$,
a finite morphism of schemes $X \to Y$.
Comments (0)