Proof.
Say $I$ is generated by $f_1, \ldots , f_ r$. For any $K \in D(A)$ by Lemma 15.91.18 we have $K^\wedge = R\mathop{\mathrm{lim}}\nolimits K \otimes _ A^\mathbf {L} K_ n$ where $K_ n$ is the Koszul complex on $f_1^ n, \ldots , f_ r^ n$ and hence we obtain a short exact sequence
\[ 0 \to R^1\mathop{\mathrm{lim}}\nolimits H^{i - 1}(K \otimes _ A^\mathbf {L} K_ n) \to H^ i(K^\wedge ) \to \mathop{\mathrm{lim}}\nolimits H^ i(K \otimes _ A^\mathbf {L} K_ n) \to 0 \]
by Lemma 15.87.4.
Proof of (1). Pick a distinguished triangle $K \to L \to C \to K[1]$. Then $H^ i(C) = 0$ for $i \geq 0$. Since $K_ n$ is sitting in degrees $\leq 0$ we see that $H^ i(C \otimes _ A^\mathbf {L} K_ n) = 0$ for $i \geq 0$ and that $H^{-1}(C \otimes _ A^\mathbf {L} K_ n) = H^{-1}(C) \otimes _ A A/(f_1^ n, \ldots , f_ r^ n)$ is a system with surjective transition maps. The displayed equation above shows that $H^ i(C^\wedge ) = 0$ for $i \geq 0$. Applying the distinguished triangle $K^\wedge \to L^\wedge \to C^\wedge \to K^\wedge [1]$ we get (1).
Proof of (2). Pick a distinguished triangle $K \to L \to C \to K[1]$. Then $H^ i(C) = 0$ for $i < 0$. Since $K_ n$ is sitting in degrees $-r, \ldots , 0$ we see that $H^ i(C \otimes _ A^\mathbf {L} K_ n) = 0$ for $i < -r$. The displayed equation above shows that $H^ i(C^\wedge ) = 0$ for $i < r$. Applying the distinguished triangle $K^\wedge \to L^\wedge \to C^\wedge \to K^\wedge [1]$ we get (2).
$\square$
Comments (0)
There are also: