Lemma 15.73.4. Let $R$ be a ring. Given $K, L, M$ in $D(R)$ there is a canonical morphism
in $D(R)$ functorial in $K, L, M$.
Lemma 15.73.4. Let $R$ be a ring. Given $K, L, M$ in $D(R)$ there is a canonical morphism
in $D(R)$ functorial in $K, L, M$.
Proof. Choose a K-injective complex $I^\bullet $ representing $M$, a K-injective complex $J^\bullet $ representing $L$, and any complex of $R$-modules $K^\bullet $ representing $K$. By Lemma 15.71.3 there is a map of complexes
The complexes of $R$-modules $\mathop{\mathrm{Hom}}\nolimits ^\bullet (J^\bullet , I^\bullet )$, $\mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , J^\bullet )$, and $\mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , I^\bullet )$ represent $R\mathop{\mathrm{Hom}}\nolimits _ R(L, M)$, $R\mathop{\mathrm{Hom}}\nolimits _ R(K, L)$, and $R\mathop{\mathrm{Hom}}\nolimits _ R(K, M)$. If we choose a K-flat complex $H^\bullet $ and a quasi-isomorphism $H^\bullet \to \mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , J^\bullet )$, then there is a map
whose source represents $R\mathop{\mathrm{Hom}}\nolimits _ R(L, M) \otimes _ R^\mathbf {L} R\mathop{\mathrm{Hom}}\nolimits _ R(K, L)$. Composing the two displayed arrows gives the desired map. We omit the proof that the construction is functorial. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: