The Stacks project

Lemma 48.9.6. Let $i : Z \to X$ be a closed immersion of schemes. Assume $X$ is a locally Noetherian. Then $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -)$ maps $D^+_{\textit{Coh}}(\mathcal{O}_ X)$ into $D^+_{\textit{Coh}}(\mathcal{O}_ Z)$.

Proof. The question is local on $X$, hence we may assume that $X$ is affine. Say $X = \mathop{\mathrm{Spec}}(A)$ and $Z = \mathop{\mathrm{Spec}}(B)$ with $A$ Noetherian and $A \to B$ surjective. In this case, we can apply Lemma 48.9.5 to translate the question into algebra. The corresponding algebra result is a consequence of Dualizing Complexes, Lemma 47.13.4. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 48.9: Right adjoint of pushforward for closed immersions

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A79. Beware of the difference between the letter 'O' and the digit '0'.