Lemma 69.9.2. Let $S$ be a scheme. Let $i : Z \to X$ be a closed immersion of algebraic spaces over $S$. Let $\mathcal{G}$ be an injective abelian sheaf on $Z_{\acute{e}tale}$. Then $\mathcal{H}^ p_ Z(i_*\mathcal{G}) = 0$ for $p > 0$.
Proof. This is true because the functor $i_*$ is exact (Lemma 69.4.1) and transforms injective abelian sheaves into injective abelian sheaves (Cohomology on Sites, Lemma 21.14.2). $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)