The Stacks project

Lemma 15.50.13. Let $(A, \mathfrak m)$ be a henselian local ring. Then $A$ is a filtered colimit of a system of henselian local G-rings with local transition maps.

Proof. Write $A = \mathop{\mathrm{colim}}\nolimits A_ i$ as a filtered colimit of finite type $\mathbf{Z}$-algebras. Let $\mathfrak p_ i$ be the prime ideal of $A_ i$ lying under $\mathfrak m$. We may replace $A_ i$ by the localization of $A_ i$ at $\mathfrak p_ i$. Then $A_ i$ is a Noetherian local G-ring (Proposition 15.50.12). By Lemma 15.12.5 we see that $A = \mathop{\mathrm{colim}}\nolimits A_ i^ h$. By Lemma 15.50.8 the rings $A_ i^ h$ are G-rings. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A41. Beware of the difference between the letter 'O' and the digit '0'.