Lemma 20.22.1. Let $X$ be a spectral space. Let $\mathcal{F}$ be an abelian sheaf on $X$. Let $E \subset X$ be a quasi-compact subset. Let $W \subset X$ be the set of points of $X$ which specialize to a point of $E$.
$H^ p(W, \mathcal{F}|_ W) = \mathop{\mathrm{colim}}\nolimits H^ p(U, \mathcal{F})$ where the colimit is over quasi-compact open neighbourhoods of $E$,
$H^ p(W \setminus E, \mathcal{F}|_{W \setminus E}) = \mathop{\mathrm{colim}}\nolimits H^ p(U \setminus E, \mathcal{F}|_{U \setminus E})$ if $E$ is a constructible subset.
Comments (0)