Lemma 20.12.6. Let $X$ be a topological space. Let $\mathcal{F}$ be an abelian sheaf on $X$. Let $\mathcal{U} : U = \bigcup _{i \in I} U_ i$ be an open covering. Assume the restriction mappings $\mathcal{F}(U) \to \mathcal{F}(U')$ are surjective for $U'$ an arbitrary union of opens of the form $U_{i_0 \ldots i_ p}$. Then $\check{H}^ p(\mathcal{U}, \mathcal{F})$ vanishes for $p > 0$.
Proof. Let $Y$ be the set of nonempty subsets of $I$. We will use the letters $A, B, C, \ldots $ to denote elements of $Y$, i.e., nonempty subsets of $I$. For a finite nonempty subset $J \subset I$ let
This means that $V_{\{ i\} } = \{ A \in Y \mid i \in A\} $ and $V_ J = \bigcap _{j \in J} V_{\{ j\} }$. Then $V_ J \subset V_ K$ if and only if $J \supset K$. There is a unique topology on $Y$ such that the collection of subsets $V_ J$ is a basis for the topology on $Y$. Any open is of the form
for some family of finite subsets $J_ t$. If $J_ t \subset J_{t'}$ then we may remove $J_{t'}$ from the family without changing $V$. Thus we may assume there are no inclusions among the $J_ t$. In this case the minimal elements of $V$ are the sets $A = J_ t$. Hence we can read off the family $(J_ t)_{t \in T}$ from the open $V$.
We can completely understand open coverings in $Y$. First, because the elements $A \in Y$ are nonempty subsets of $I$ we have
To understand other coverings, let $V$ be as above and let $V_ s \subset Y$ be an open corresponding to the family $(J_{s, t})_{t \in T_ s}$. Then
if and only if for each $t \in T$ there exists an $s \in S$ and $t_ s \in T_ s$ such that $J_ t = J_{s, t_ s}$. Namely, as the family $(J_ t)_{t \in T}$ is minimal, the minimal element $A = J_ t$ has to be in $V_ s$ for some $s$, hence $A \in V_{J_{t_ s}}$ for some $t_ s \in T_ s$. But since $A$ is also minimal in $V_ s$ we conclude that $J_{t_ s} = J_ t$.
Next we map the set of opens of $Y$ to opens of $X$. Namely, we send $Y$ to $U$, we use the rule
on the opens $V_ J$, and we extend it to arbitrary opens $V$ by the rule
The classification of open coverings of $Y$ given above shows that this rule transforms open coverings into open coverings. Thus we obtain an abelian sheaf $\mathcal{G}$ on $Y$ by setting $\mathcal{G}(Y) = \mathcal{F}(U)$ and for $V = \bigcup \nolimits _{t \in T} V_{J_ t}$ setting
and using the restriction maps of $\mathcal{F}$.
With these preliminaries out of the way we can prove our lemma as follows. We have an open covering $\mathcal{V} : Y = \bigcup _{i \in I} V_{\{ i\} }$ of $Y$. By construction we have an equality
of Čech complexes. Since the sheaf $\mathcal{G}$ is flasque on $Y$ (by our assumption on $\mathcal{F}$ in the statement of the lemma) the vanishing follows from Lemma 20.12.4. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: