Lemma 6.29.4. In the situation described above, let $i \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})$ and let $U_ i \subset X_ i$ be a quasi-compact open. Then
Proof. Recall that $p_ i^{-1}(U_ i)$ is a quasi-compact open of the spectral space $X$, see Topology, Lemma 5.24.5. Hence Lemma 6.29.1 applies and we have
A formal argument shows that
Thus it suffices to show that
This is Lemma 6.29.3 applied to $\mathcal{F}_ j$ and the quasi-compact open $f_ a^{-1}(U_ i)$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: