Trivial duality for systems of perfect objects.
Lemma 21.48.8. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $(K_ n)_{n \in \mathbf{N}}$ be a system of perfect objects of $D(\mathcal{O})$. Let $K = \text{hocolim} K_ n$ be the derived colimit (Derived Categories, Definition 13.33.1). Then for any object $E$ of $D(\mathcal{O})$ we have
\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K, E) = R\mathop{\mathrm{lim}}\nolimits E \otimes ^\mathbf {L}_\mathcal {O} K_ n^\vee \]
where $(K_ n^\vee )$ is the inverse system of dual perfect complexes.
Proof.
By Lemma 21.48.4 we have $R\mathop{\mathrm{lim}}\nolimits E \otimes ^\mathbf {L}_\mathcal {O} K_ n^\vee = R\mathop{\mathrm{lim}}\nolimits R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K_ n, E)$ which fits into the distinguished triangle
\[ R\mathop{\mathrm{lim}}\nolimits R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K_ n, E) \to \prod R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K_ n, E) \to \prod R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K_ n, E) \]
Because $K$ similarly fits into the distinguished triangle $\bigoplus K_ n \to \bigoplus K_ n \to K$ it suffices to show that $\prod R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (K_ n, E) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\bigoplus K_ n, E)$. This is a formal consequence of (21.35.0.1) and the fact that derived tensor product commutes with direct sums.
$\square$
Comments (2)
Comment #781 by Matthieu Romagny on
Comment #799 by Johan on