Lemma 15.12.3. The functor of Lemma 15.12.1 associates to a local ring $(A, \mathfrak m)$ its henselization.
Compatibility henselization of pairs and of local rings.
Proof.
Let $(A^ h, \mathfrak m^ h)$ be the henselization of the pair $(A, \mathfrak m)$ constructed in Lemma 15.12.1. Then $\mathfrak m^ h = \mathfrak m A^ h$ is a maximal ideal by Lemma 15.12.2 and since it is contained in the Jacobson radical, we conclude $A^ h$ is local with maximal ideal $\mathfrak m^ h$. Having said this there are two ways to finish the proof.
First proof: observe that the construction in the proof of Algebra, Lemma 10.155.1 as a colimit is the same as the colimit used to construct $A^ h$ in Lemma 15.12.1. Second proof: Both the henselization $A \to S$ and $A \to A^ h$ of Lemma 15.12.1 are local ring homomorphisms, both $S$ and $A^ h$ are filtered colimits of étale $A$-algebras, both $S$ and $A^ h$ are henselian local rings, and both $S$ and $A^ h$ have residue fields equal to $\kappa (\mathfrak m)$ (by Lemma 15.12.2 for the second case). Hence they are canonically isomorphic by Algebra, Lemma 10.154.7.
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (3)
Comment #988 by Johan Commelin on
Comment #3643 by Brian Conrad on
Comment #3741 by Johan on