The Stacks project

Lemma 8.10.6. Let $\mathcal{C}$ be a site. Let $p : \mathcal{X} \to \mathcal{C}$ be a stack. Endow $\mathcal{X}$ with the topology inherited from $\mathcal{C}$ and let $q : \mathcal{Y} \to \mathcal{X}$ be a stack. Then $\mathcal{Y}$ is a stack over $\mathcal{C}$. If $p$ and $q$ define stacks in groupoids, then $\mathcal{Y}$ is a stack in groupoids over $\mathcal{C}$.

Proof. We check the three conditions in Definition 8.4.1 to prove that $\mathcal{Y}$ is a stack over $\mathcal{C}$. By Categories, Lemma 4.33.12 we find that $\mathcal{Y}$ is a fibred category over $\mathcal{C}$. Thus condition (1) holds.

Let $U$ be an object of $\mathcal{C}$ and let $y_1, y_2$ be objects of $\mathcal{Y}$ over $U$. Denote $x_ i = q(y_ i)$ in $\mathcal{X}$. Consider the map of presheaves

\[ q : \mathit{Mor}_{\mathcal{Y}/\mathcal{C}}(y_1, y_2) \longrightarrow \mathit{Mor}_{\mathcal{X}/\mathcal{C}}(x_1, x_2) \]

on $\mathcal{C}/U$, see Lemma 8.2.3. Let $\{ U_ i \to U\} $ be a covering and let $\varphi _ i$ be a section of the presheaf on the left over $U_ i$ such that $\varphi _ i$ and $\varphi _ j$ restrict to the same section over $U_ i \times _ U U_ j$. We have to find a morphism $\varphi : y_1 \to y_2$ restricting to $\varphi _ i$. Note that $q(\varphi _ i) = \psi |_{U_ i}$ for some morphism $\psi : x_1 \to x_2$ over $U$ because the second presheaf is a sheaf (by assumption). Let $y_{12} \to y_2$ be the strongly $\mathcal{X}$-cartesian morphism of $\mathcal{Y}$ lying over $\psi $. Then $\varphi _ i$ corresponds to a morphism $\varphi '_ i : y_1|_{U_ i} \to y_{12}|_{U_ i}$ over $x_1|_{U_ i}$. In other words, $\varphi '_ i$ now define local sections of the presheaf

\[ \mathit{Mor}_{\mathcal{Y}/\mathcal{X}}(y_1, y_{12}) \]

over the members of the covering $\{ x_1|_{U_ i} \to x_1\} $. By assumption these glue to a unique morphism $y_1 \to y_{12}$ which composed with the given morphism $y_{12} \to y_2$ produces the desired morphism $y_1 \to y_2$.

Finally, we show that descent data are effective. Let $\{ f_ i : U_ i \to U\} $ be a covering of $\mathcal{C}$ and let $(y_ i, \varphi _{ij})$ be a descent datum relative to this covering (Definition 8.3.1). Setting $x_ i = q(y_ i)$ and $\psi _{ij} = q(\varphi _{ij})$ we obtain a descent datum $(x_ i, \psi _{ij})$ for the covering in $\mathcal{X}$. By assumption on $\mathcal{X}$ we may assume $x_ i = x|_{U_ i}$ and the $\psi _{ij}$ equal to the canonical descent datum (Definition 8.3.5). In this case $\{ x|_{U_ i} \to x\} $ is a covering and we can view $(y_ i, \varphi _{ij})$ as a descent datum relative to this covering. By our assumption that $\mathcal{Y}$ is a stack over $\mathcal{C}$ we see that it is effective which finishes the proof of condition (3).

The final assertion follows because $\mathcal{Y}$ is a stack over $\mathcal{C}$ and is fibred in groupoids by Categories, Lemma 4.35.14. $\square$


Comments (2)

Comment #8729 by Erhard Neher on

Line 8 of the proof should read: We have to find a morphism restricting to ...


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09WX. Beware of the difference between the letter 'O' and the digit '0'.