Lemma 4.19.5. Let $\mathcal{I}$ be an index category, i.e., a category. Assume that for every pair of objects $x, y$ of $\mathcal{I}$ there exist an object $z$ and morphisms $x \to z$ and $y \to z$. Let $M : \mathcal{I} \to \textit{Ab}$ be a diagram of abelian groups over $\mathcal{I}$. Then the colimit of $M$ in the category of sets surjects onto the colimit of $M$ in the category of abelian groups.
Proof. Recall that the colimit in the category of sets is the quotient of the disjoint union $\coprod M_ i$ by relation, see Section 4.15. Similarly, the colimit in the category of abelian groups is a quotient of the direct sum $\bigoplus M_ i$. The assumption of the lemma means that given $i, j \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{I})$ and $m \in M_ i$ and $n \in M_ j$, then we can find an object $k$ and morphisms $a : i \to k$ and $b : j \to k$. Thus $m + n$ is represented in the colimit by the element $M(a)(m) + M(b)(n)$ of $M_ k$. Thus the $\coprod M_ i$ surjects onto the colimit. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: