Proof.
Proof of (1). Let $V$ be an object of $\mathcal{D}$. We have $u^ ph_ V = h_{v(V)}$ because $u^ ph_ V(U) = \mathop{\mathrm{Mor}}\nolimits _\mathcal {D}(u(U), V) = \mathop{\mathrm{Mor}}\nolimits _\mathcal {C}(U, v(V))$ by assumption.
Proof of (2). Let $U$ be an object of $\mathcal{C}$. Let $\eta : U \to v(u(U))$ be the map adjoint to the map $\text{id} : u(U) \to u(U)$. Then we claim $(u(U), \eta )$ is an initial object of $\mathcal{I}_ U^ v$. Namely, given an object $(V, \phi : U \to v(V))$ of $\mathcal{I}_ U^ v$ the morphism $\phi $ is adjoint to a map $\psi : u(U) \to V$ which then defines a morphism $(u(U), \eta ) \to (V, \phi )$.
Proof of (3). Let $V$ be an object of $\mathcal{D}$. Let $\xi : u(v(V)) \to V$ be the map adjoint to the map $\text{id} : v(V) \to v(V)$. Then we claim $(v(V), \xi )$ is a final object of ${}_ V^ u\mathcal{I}$. Namely, given an object $(U, \psi : u(U) \to V)$ of ${}_ V^ u\mathcal{I}$ the morphism $\psi $ is adjoint to a map $\phi : U \to v(V)$ which then defines a morphism $(U, \psi ) \to (v(V), \xi )$.
Hence for any presheaf $\mathcal{F}$ on $\mathcal{C}$ we have
\begin{eqnarray*} v^ p\mathcal{F}(V) & = & \mathcal{F}(v(V)) \\ & = & \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(h_{v(V)}, \mathcal{F}) \\ & = & \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{C})}(u^ ph_ V, \mathcal{F}) \\ & = & \mathop{\mathrm{Mor}}\nolimits _{\textit{PSh}(\mathcal{D})}(h_ V, {}_ pu\mathcal{F}) \\ & = & {}_ pu\mathcal{F}(V) \end{eqnarray*}
which proves part (4). Part (5) follows by the uniqueness of adjoint functors.
$\square$
Comments (1)
Comment #1778 by Kiran Kedlaya on
There are also: