Lemma 20.16.1. Let $X$ be a topological space. Let $\mathcal{F}$ be an abelian sheaf. Then the map $\check{H}^1(X, \mathcal{F}) \to H^1(X, \mathcal{F})$ defined in (20.15.0.1) is an isomorphism.
Proof. Let $\mathcal{U}$ be an open covering of $X$. By Lemma 20.11.5 there is an exact sequence
Thus the map is injective. To show surjectivity it suffices to show that any element of $\check{H}^0(\mathcal{U}, \underline{H}^1(\mathcal{F}))$ maps to zero after replacing $\mathcal{U}$ by a refinement. This is immediate from the definitions and the fact that $\underline{H}^1(\mathcal{F})$ is a presheaf of abelian groups whose sheafification is zero by locality of cohomology, see Lemma 20.7.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: