The Stacks project

Lemma 75.12.1. Let $S$ be a Noetherian affine scheme. Every injective object of $\mathit{QCoh}(\mathcal{O}_ S)$ is a filtered colimit $\mathop{\mathrm{colim}}\nolimits _ i \mathcal{F}_ i$ of quasi-coherent sheaves of the form

\[ \mathcal{F}_ i = (Z_ i \to S)_*\mathcal{G}_ i \]

where $Z_ i$ is the spectrum of an Artinian ring and $\mathcal{G}_ i$ is a coherent module on $Z_ i$.

Proof. Let $S = \mathop{\mathrm{Spec}}(A)$. Let $\mathcal{J}$ be an injective object of $\mathit{QCoh}(\mathcal{O}_ S)$. Since $\mathit{QCoh}(\mathcal{O}_ S)$ is equivalent to the category of $A$-modules we see that $\mathcal{J}$ is equal to $\widetilde{J}$ for some injective $A$-module $J$. By Dualizing Complexes, Proposition 47.5.9 we can write $J = \bigoplus E_\alpha $ with $E_\alpha $ indecomposable and therefore isomorphic to the injective hull of a reside field at a point. Thus (because finite disjoint unions of Artinian schemes are Artinian) we may assume that $J$ is the injective hull of $\kappa (\mathfrak p)$ for some prime $\mathfrak p$ of $A$. Then $J = \bigcup J[\mathfrak p^ n]$ where $J[\mathfrak p^ n]$ is the injective hull of $\kappa (\mathfrak p)$ over $A_\mathfrak /\mathfrak p^ nA_\mathfrak p$, see Dualizing Complexes, Lemma 47.7.3. Thus $\widetilde{J}$ is the colimit of the sheaves $(Z_ n \to X)_*\mathcal{G}_ n$ where $Z_ n = \mathop{\mathrm{Spec}}(A_\mathfrak p/\mathfrak p^ nA_\mathfrak p)$ and $\mathfrak G_ n$ the coherent sheaf associated to the finite $A_\mathfrak /\mathfrak p^ nA_\mathfrak p$-module $J[\mathfrak p^ n]$. Finiteness follows from Dualizing Complexes, Lemma 47.6.1. $\square$


Comments (1)

Comment #1209 by on

Reside should be residue in the second sentence of the proof. And the LaTeX is going wrong in the fourth sentence: should be I guess.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09TI. Beware of the difference between the letter 'O' and the digit '0'.