Lemma 36.8.1. Let $X$ be a Noetherian scheme. Let $\mathcal{J}$ be an injective object of $\mathit{QCoh}(\mathcal{O}_ X)$. Then $\mathcal{J}$ is a flasque sheaf of $\mathcal{O}_ X$-modules.
Proof. Let $U \subset X$ be an open subset and let $s \in \mathcal{J}(U)$ be a section. Let $\mathcal{I} \subset \mathcal{O}_ X$ be the quasi-coherent sheaf of ideals defining the reduced induced scheme structure on $X \setminus U$ (see Schemes, Definition 26.12.5). By Cohomology of Schemes, Lemma 30.10.5 the section $s$ corresponds to a map $\sigma : \mathcal{I}^ n \to \mathcal{J}$ for some $n$. As $\mathcal{J}$ is an injective object of $\mathit{QCoh}(\mathcal{O}_ X)$ we can extend $\sigma $ to a map $\tilde s : \mathcal{O}_ X \to \mathcal{J}$. Then $\tilde s$ corresponds to a global section of $\mathcal{J}$ restricting to $s$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #7491 by Xiaolong Liu on
Comment #7637 by Stacks Project on