The Stacks project

Lemma 36.29.2. In Situation 36.29.1. Let $E_0$ and $K_0$ be objects of $D(\mathcal{O}_{S_0})$. Set $E_ i = Lf_{i0}^*E_0$ and $K_ i = Lf_{i0}^*K_0$ for $i \geq 0$ and set $E = Lf_0^*E_0$ and $K = Lf_0^*K_0$. Then the map

\[ \mathop{\mathrm{colim}}\nolimits _{i \geq 0} \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_{S_ i})}(E_ i, K_ i) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ S)}(E, K) \]

is an isomorphism if either

  1. $E_0$ is perfect and $K_0 \in D_\mathit{QCoh}(\mathcal{O}_{S_0})$, or

  2. $E_0$ is pseudo-coherent and $K_0 \in D_\mathit{QCoh}(\mathcal{O}_{S_0})$ has finite tor dimension.

Proof. For every open $U_0 \subset S_0$ consider the condition $P$ that the canonical map

\[ \mathop{\mathrm{colim}}\nolimits _{i \geq 0} \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_{U_ i})}(E_ i|_{U_ i}, K_ i|_{U_ i}) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ U)}(E|_ U, K|_ U) \]

is an isomorphism, where $U = f_0^{-1}(U_0)$ and $U_ i = f_{i0}^{-1}(U_0)$. We will prove $P$ holds for all quasi-compact opens $U_0$ by the induction principle of Cohomology of Schemes, Lemma 30.4.1. Condition (2) of this lemma follows immediately from Mayer-Vietoris for hom in the derived category, see Cohomology, Lemma 20.33.3. Thus it suffices to prove the lemma when $S_0$ is affine.

Assume $S_0$ is affine. Say $S_0 = \mathop{\mathrm{Spec}}(A_0)$, $S_ i = \mathop{\mathrm{Spec}}(A_ i)$, and $S = \mathop{\mathrm{Spec}}(A)$. We will use Lemma 36.3.5 without further mention.

In case (1) the object $E_0^\bullet $ corresponds to a finite complex of finite projective $A_0$-modules, see Lemma 36.10.7. We may represent the object $K_0$ by a K-flat complex $K_0^\bullet $ of $A_0$-modules. In this situation we are trying to prove

\[ \mathop{\mathrm{colim}}\nolimits _{i \geq 0} \mathop{\mathrm{Hom}}\nolimits _{D(A_ i)}(E_0^\bullet \otimes _{A_0} A_ i, K_0^\bullet \otimes _{A_0} A_ i) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(A)}(E_0^\bullet \otimes _{A_0} A, K_0^\bullet \otimes _{A_0} A) \]

Because $E_0^\bullet $ is a bounded above complex of projective modules we can rewrite this as

\[ \mathop{\mathrm{colim}}\nolimits _{i \geq 0} \mathop{\mathrm{Hom}}\nolimits _{K(A_0)}(E_0^\bullet , K_0^\bullet \otimes _{A_0} A_ i) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{K(A_0)}(E_0^\bullet , K_0^\bullet \otimes _{A_0} A) \]

Since there are only a finite number of nonzero modules $E_0^ n$ and since these are all finitely presented modules, this map is an isomorphism.

In case (2) the object $E_0$ corresponds to a bounded above complex $E_0^\bullet $ of finite free $A_0$-modules, see Lemma 36.10.2. We may represent $K_0$ by a finite complex $K_0^\bullet $ of flat $A_0$-modules, see Lemma 36.10.4 and More on Algebra, Lemma 15.66.3. In particular $K_0^\bullet $ is K-flat and we can argue as before to arrive at the map

\[ \mathop{\mathrm{colim}}\nolimits _{i \geq 0} \mathop{\mathrm{Hom}}\nolimits _{K(A_0)}(E_0^\bullet , K_0^\bullet \otimes _{A_0} A_ i) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{K(A_0)}(E_0^\bullet , K_0^\bullet \otimes _{A_0} A) \]

It is clear that this map is an isomorphism (only a finite number of terms are involved since $K_0^\bullet $ is bounded). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09RE. Beware of the difference between the letter 'O' and the digit '0'.