Lemma 22.27.15. In Situation 22.27.2 given admissible monomorphisms $x \xrightarrow {\alpha } y$, $y \xrightarrow {\beta } z$ in $\mathcal{A}$, there exist distinguished triangles $(x,y,q_1,\alpha ,p_1,\delta _1)$, $(x,z,q_2,\beta \alpha ,p_2,\delta _2)$ and $(y,z,q_3,\beta ,p_3,\delta _3)$ for which TR4 holds.
Proof. Given admissible monomorphisms $x\xrightarrow {\alpha } y$ and $y\xrightarrow {\beta }z$, we can find distinguished triangles, via their extensions to admissible short exact sequences,
In these diagrams, the maps $\delta _ i$ are defined as $\delta _ i = \pi _ i d(s_ i)$ analogous to the maps defined in Lemma 22.27.1. They fit in the following solid commutative diagram
where we have defined the dashed arrows as indicated. Clearly, their composition $p_3s_2p_2\beta s_1 = 0$ since $s_2p_2 = 0$. We claim that they both are morphisms of $\text{Comp}(\mathcal{A})$. We can check this using equations in Lemma 22.27.1:
since $p_2\beta \alpha = 0$, and
since $p_3\beta = 0$. To check that $q_1\to q_2\to q_3$ is an admissible short exact sequence, it remains to show that in the underlying graded category, $q_2 = q_1\oplus q_3$ with the above two morphisms as coprojection and projection. To do this, observe that in the underlying graded category $\mathcal{C}$, there hold
where $\pi _1\pi _3$ gives the projection morphism onto the first factor: $x\oplus q_1\oplus q_3\to z$. By axiom (A) on $\mathcal{A}$, $\mathcal{C}$ is an additive category, hence we may apply Homology, Lemma 12.3.10 and conclude that
in $\mathcal{C}$. Another application of Homology, Lemma 12.3.10 to $z = x\oplus q_2$ gives $\mathop{\mathrm{Ker}}(\pi _1\pi _3) = q_2$. Hence $q_2\cong q_1\oplus q_3$ in $\mathcal{C}$. It is clear that the dashed morphisms defined above give coprojection and projection.
Finally, we have to check that the morphism $\delta : q_3 \to q_1[1]$ induced by the admissible short exact sequence $q_1\to q_2\to q_3$ agrees with $p_1\delta _3$. By the construction in Lemma 22.27.1, the morphism $\delta $ is given by
as desired. The proof is complete. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)