The Stacks project

Lemma 22.27.11. In Situation 22.27.2 let $\alpha : x \to y$ and $\beta : y \to z$ define an admissible short exact sequence

\[ \xymatrix{ x \ar[r] & y\ar[r] & z } \]

in $\text{Comp}(\mathcal{A})$. Let $(x, y, z, \alpha , \beta , \delta )$ be the associated triangle in $K(\mathcal{A})$. Then, the triangles

\[ (z[-1], x, y, \delta [-1], \alpha , \beta ) \quad \text{and}\quad (z[-1], x, c(\delta [-1]), \delta [-1], i, p) \]

are isomorphic.

Proof. We have a diagram of the form

\[ \xymatrix{ z[-1]\ar[r]^{\delta [-1]}\ar[d]^1 & x\ar@<0.5ex>[r]^{\alpha }\ar[d]^1 & y\ar@<0.5ex>[r]^{\beta }\ar@{.>}[d]\ar@<0.5ex>[l]^{\tilde{\alpha }} & z\ar[d]^1\ar@<0.5ex>[l]^{\tilde\beta } \\ z[-1] \ar[r]^{\delta [-1]} & x\ar@<0.5ex>[r]^ i & c(\delta [-1]) \ar@<0.5ex>[r]^ p\ar@<0.5ex>[l]^{\tilde i} & z\ar@<0.5ex>[l]^{\tilde p} } \]

with splittings to $\alpha , \beta , i$, and $p$ given by $\tilde{\alpha }, \tilde{\beta }, \tilde{i},$ and $\tilde{p}$ respectively. Define a morphism $y \to c(\delta [-1])$ by $i\tilde{\alpha } + \tilde{p}\beta $ and a morphism $c(\delta [-1]) \to y$ by $\alpha \tilde{i} + \tilde{\beta } p$. Let us first check that these define morphisms in $\text{Comp}(\mathcal{A})$. We remark that by identities from Lemma 22.27.1, we have the relation $\delta [-1] = \tilde{\alpha }d(\tilde{\beta }) = -d(\tilde{\alpha })\tilde{\beta }$ and the relation $\delta [-1] = \tilde{i}d(\tilde{p})$. Then

\begin{align*} d(\tilde{\alpha }) & = d(\tilde{\alpha })\tilde{\beta }\beta \\ & = -\delta [-1]\beta \end{align*}

where we have used equation (6) of Lemma 22.27.1 for the first equality and the preceding remark for the second. Similarly, we obtain $d(\tilde{p}) = i\delta [-1]$. Hence

\begin{align*} d(i\tilde{\alpha } + \tilde{p}\beta ) & = d(i)\tilde{\alpha } + id(\tilde{\alpha }) + d(\tilde{p})\beta + \tilde{p}d(\beta ) \\ & = id(\tilde{\alpha }) + d(\tilde{p})\beta \\ & = -i\delta [-1]\beta + i\delta [-1]\beta \\ & = 0 \end{align*}

so $i\tilde{\alpha } + \tilde{p}\beta $ is indeed a morphism of $\text{Comp}(\mathcal{A})$. By a similar calculation, $\alpha \tilde{i} + \tilde{\beta } p$ is also a morphism of $\text{Comp}(\mathcal{A})$. It is immediate that these morphisms fit in the commutative diagram. We compute:

\begin{align*} (i\tilde{\alpha } + \tilde{p}\beta )(\alpha \tilde{i} + \tilde{\beta } p) & = i\tilde{\alpha }\alpha \tilde{i} + i\tilde{\alpha }\tilde{\beta }p + \tilde{p}\beta \alpha \tilde{i} + \tilde{p}\beta \tilde{\beta }p \\ & = i\tilde{i} + \tilde{p}p \\ & = 1_{c(\delta [-1])} \end{align*}

where we have freely used the identities of Lemma 22.27.1. Similarly, we compute $(\alpha \tilde{i} + \tilde{\beta } p)(i\tilde{\alpha } + \tilde{p}\beta ) = 1_ y$, so we conclude $y \cong c(\delta [-1])$. Hence, the two triangles in question are isomorphic. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09QS. Beware of the difference between the letter 'O' and the digit '0'.