Theorem 75.17.3. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Then there exist a differential graded algebra $(E, \text{d})$ with only a finite number of nonzero cohomology groups $H^ i(E)$ such that $D_\mathit{QCoh}(\mathcal{O}_ X)$ is equivalent to $D(E, \text{d})$.
Proof. Let $K^\bullet $ be a K-injective complex of $\mathcal{O}$-modules which is perfect and generates $D_\mathit{QCoh}(\mathcal{O}_ X)$. Such a thing exists by Theorem 75.15.4 and the existence of K-injective resolutions. We will show the theorem holds with
where $\text{Comp}^{dg}(\mathcal{O}_ X)$ is the differential graded category of complexes of $\mathcal{O}$-modules. Please see Differential Graded Algebra, Section 22.35. Since $K^\bullet $ is K-injective we have
for all $n \in \mathbf{Z}$. Only a finite number of these Exts are nonzero by Lemma 75.17.2. Consider the functor
of Differential Graded Algebra, Lemma 22.35.3. Since $K^\bullet $ is perfect, it defines a compact object of $D(\mathcal{O}_ X)$, see Proposition 75.16.1. Combined with (75.17.3.1) the functor above is fully faithful as follows from Differential Graded Algebra, Lemmas 22.35.6. It has a right adjoint
by Differential Graded Algebra, Lemmas 22.35.5 which is a left quasi-inverse functor by generalities on adjoint functors. On the other hand, it follows from Lemma 75.17.1 that we obtain
and by our choice of $K^\bullet $ as a generator of $D_\mathit{QCoh}(\mathcal{O}_ X)$ the kernel of the adjoint restricted to $D_\mathit{QCoh}(\mathcal{O}_ X)$ is zero. A formal argument shows that we obtain the desired equivalence, see Derived Categories, Lemma 13.7.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)