The Stacks project

Lemma 22.30.3. Let $R$ be a ring. Let $A$ and $B$ be $R$-algebras. Let $M$ be a right $A$-module, $N$ an $(A, B)$-bimodule, and $N'$ a right $B$-module. Then we have a canonical isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits _ B(M \otimes _ A N, N') = \mathop{\mathrm{Hom}}\nolimits _ A(M, \mathop{\mathrm{Hom}}\nolimits _ B(N, N')) \]

of $R$-modules. If $A$, $B$, $M$, $N$, $N'$ are compatibly graded, then we have a canonical isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits _{\text{Mod}_ B^{gr}}(M \otimes _ A N, N') = \mathop{\mathrm{Hom}}\nolimits _{\text{Mod}_ A^{gr}}(M, \mathop{\mathrm{Hom}}\nolimits _{\text{Mod}_ B^{gr}}(N, N')) \]

of graded $R$-modules If $A$, $B$, $M$, $N$, $N'$ are compatibly differential graded, then we have a canonical isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits _{\text{Mod}^{dg}_{(B, \text{d})}}(M \otimes _ A N, N') = \mathop{\mathrm{Hom}}\nolimits _{\text{Mod}^{dg}_{(A, \text{d})}}(M, \mathop{\mathrm{Hom}}\nolimits _{\text{Mod}^{dg}_{(B, \text{d})}}(N, N')) \]

of complexes of $R$-modules.

Proof. Omitted. Hint: in the ungraded case interpret both sides as $A$-bilinear maps $\psi : M \times N \to N'$ which are $B$-linear on the right. In the (differential) graded case, use the isomorphism of More on Algebra, Lemma 15.71.1 and check it is compatible with the module structures. Alternatively, use the isomorphism of Lemma 22.13.2 and show that it is compatible with the $B$-module structures. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09LN. Beware of the difference between the letter 'O' and the digit '0'.