The Stacks project

Example 9.26.6. Consider the field extension $\mathbf{Q}(e, \pi )$ formed by adjoining the numbers $e$ and $\pi $. This field extension has transcendence degree at least $1$ since both $e$ and $\pi $ are transcendental over the rationals. However, this field extension might have transcendence degree $2$ if $e$ and $\pi $ are algebraically independent. Whether or not this is true is unknown and whence the problem of determining $\text{trdeg}(\mathbf{Q}(e, \pi ))$ is open.


Comments (0)

There are also:

  • 9 comment(s) on Section 9.26: Transcendence

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09I9. Beware of the difference between the letter 'O' and the digit '0'.