Lemma 9.17.1. Let $A$ be an abelian group of exponent dividing $n$ such that $\{ x \in A \mid dx = 0\} $ has cardinality at most $d$ for all $d | n$. Then $A$ is cyclic of order dividing $n$.
Proof. The conditions imply that $|A| \leq n$, in particular $A$ is finite. The structure of finite abelian groups shows that $A = \mathbf{Z}/e_1\mathbf{Z} \oplus \ldots \oplus \mathbf{Z}/e_ r\mathbf{Z}$ for some integers $1 < e_1 | e_2 | \ldots | e_ r$. This would imply that $\{ x \in A \mid e_1 x = 0\} $ has cardinality $e_1^ r$. Hence $r = 1$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)