Lemma 9.8.7. Let $E/k$ be a field extension. Then the elements of $E$ algebraic over $k$ form a subextension of $E/k$.
Proof. Let $\alpha , \beta \in E$ be algebraic over $k$. Then $k(\alpha , \beta )/k$ is a finite extension by Lemma 9.8.6. It follows that $k(\alpha + \beta ) \subset k(\alpha , \beta )$ is a finite extension, which implies that $\alpha + \beta $ is algebraic by Lemma 9.8.5. Similarly for the difference, product and quotient of $\alpha $ and $\beta $. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: