The Stacks project

Lemma 15.115.15. Let $A \subset B \subset C$ be extensions of discrete valuation rings with fractions fields $K \subset L \subset M$. Assume that

  1. $A$ has mixed characteristic $(0, p)$,

  2. $A \subset B$ is weakly unramified,

  3. $B$ contains a primitive $p$th root of $1$, and

  4. $M/L$ is Galois of degree $p$.

Then there exists a finite Galois extension $K_1/K$ totally ramified with respect to $A$ which is either a weak solution for $A \to C$ or is such that $M_1/L_1$ is a degree $p$ extension of finite level.

Proof. Let $\pi \in A$ be a uniformizer. By Kummer theory (Fields, Lemma 9.24.1) $M$ is obtained from $L$ by adjoining the root of $y^ p = b$ for some $b \in L$.

If $\text{ord}_ B(b)$ is prime to $p$, then we choose a degree $p$ separable extension $K_1/K$ totally ramified with respect to $A$ (for example using Lemma 15.115.7). Let $A_1$ be the integral closure of $A$ in $K_1$. By Lemma 15.115.3 the integral closure $B_1$ of $B$ in $L_1 = L \otimes _ K K_1$ is a discrete valuation ring weakly unramified over $A_1$. If $K_1/K$ is not a weak solution for $A \to C$, then the integral closure $C_1$ of $C$ in $M_1 = M \otimes _ K K_1$ is a discrete valuation ring and $B_1 \to C_1$ has ramification index $p$. In this case, the field $M_1$ is obtained from $L_1$ by adjoining the $p$th root of $b$ with $\text{ord}_{B_1}(b)$ divisible by $p$. Replacing $A$ by $A_1$, etc we may assume that $b = \pi ^ n u$ where $u \in B$ is a unit and $n$ is divisible by $p$. Of course, in this case the extension $M$ is obtained from $L$ by adjoining the $p$th root of a unit.

Suppose $M$ is obtained from $L$ by adjoining the root of $y^ p = u$ for some unit $u$ of $B$. If the residue class of $u$ in $\kappa _ B$ is not a $p$th power, then $B \subset C$ is weakly unramified (Lemma 15.115.8) and we are done. Otherwise, we can replace our choice of $y$ by $y/v$ where $v^ p$ and $u$ have the same image in $\kappa _ B$. After such a replacement we have

\[ y^ p = 1 + \pi b \]

for some $b \in B$. Then we see that $P(z) = \pi b/ w^ p$ where $z = (y - 1)/w$. Thus we see that the extension is a degree $p$ extension of finite level with $\xi = \pi b / w^ p$. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 15.115: Eliminating ramification

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09F4. Beware of the difference between the letter 'O' and the digit '0'.