Lemma 115.21.4. In Quot, Situation 99.5.1 assume that $S$ is a locally Noetherian scheme and $S = B$. Let $\mathcal{X} = \textit{Coh}_{X/B}$. Then we have openness of versality for $\mathcal{X}$ (see Artin's Axioms, Definition 98.13.1).
Proof (sketch). Let $U \to S$ be of finite type morphism of schemes, $x$ an object of $\mathcal{X}$ over $U$ and $u_0 \in U$ a finite type point such that $x$ is versal at $u_0$. After shrinking $U$ we may assume that $u_0$ is a closed point (Morphisms, Lemma 29.16.1) and $U = \mathop{\mathrm{Spec}}(A)$ with $U \to S$ mapping into an affine open $\mathop{\mathrm{Spec}}(\Lambda )$ of $S$. We will use Artin's Axioms, Lemma 98.24.4 to prove the lemma. Let $\mathcal{F}$ be the coherent module on $X_ A = \mathop{\mathrm{Spec}}(A) \times _ S X$ flat over $A$ corresponding to the given object $x$.
Choose $E(\mathcal{F})$ and $e_\mathcal {F}$ as in Remark 115.21.1. The description of the cohomology sheaves of $E(\mathcal{F})$ shows that
for any $A$-module $M$. Using this and using Deformation Theory, Lemma 91.11.7 we have an isomorphism of functors
By Lemma 115.21.3 given any surjection $A' \to A$ of $\Lambda $-algebras with square zero kernel $I$ we have an obstruction class
Apply Derived Categories of Spaces, Lemma 75.23.3 to the computation of the Ext groups $\mathop{\mathrm{Ext}}\nolimits ^ i_{X_ A}(E(\mathcal{F}), \mathcal{F} \otimes _ A M)$ for $i \leq m$ with $m = 2$. We omit the verification that $E(\mathcal{F})$ is in $D^-_{\textit{Coh}}$; hint: use Cotangent, Lemma 92.5.4. We find a perfect object $K \in D(A)$ and functorial isomorphisms
for $i \leq m$ compatible with boundary maps. This object $K$, together with the displayed identifications above gives us a datum as in Artin's Axioms, Situation 98.24.2. Finally, condition (iv) of Artin's Axioms, Lemma 98.24.3 holds by a variant of Deformation Theory, Lemma 91.12.5 whose formulation and proof we omit. Thus Artin's Axioms, Lemma 98.24.4 applies and the lemma is proved. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)