Definition 92.19.1. Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings. Let $\mathcal{F}$ be a sheaf of $\mathcal{B}$-modules. The map $\mathcal{F} \to L_{\mathcal{B}/\mathcal{A}} \otimes _\mathcal {B}^\mathbf {L} \mathcal{F}[1]$ in (92.19.0.2) is called the Atiyah class of $\mathcal{F}$.
92.19 The Atiyah class of a sheaf of modules
Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings. Let $\mathcal{F}$ be a sheaf of $\mathcal{B}$-modules. Let $\mathcal{P}_\bullet \to \mathcal{B}$ be the standard resolution of $\mathcal{B}$ over $\mathcal{A}$ (Section 92.18). For every $n \geq 0$ consider the extension of principal parts
see Modules on Sites, Lemma 18.34.6. The functoriality of this construction (Modules on Sites, Remark 18.34.7) tells us (92.19.0.1) is the degree $n$ part of a short exact sequence of simplicial $\mathcal{P}_\bullet $-modules (Cohomology on Sites, Section 21.41). Using the functor $L\pi _! : D(\mathcal{P}_\bullet ) \to D(\mathcal{B})$ of Cohomology on Sites, Remark 21.41.3 (here we use that $\mathcal{P}_\bullet \to \mathcal{A}$ is a resolution) we obtain a distinguished triangle
in $D(\mathcal{B})$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)