Definition 92.17.1. Let $A \to B$ be a ring map. Let $M$ be a $B$-module. The map $M \to L_{B/A} \otimes _ B^\mathbf {L} M[1]$ in (92.17.0.1) is called the Atiyah class of $M$.
92.17 The Atiyah class of a module
Let $A \to B$ be a ring map. Let $M$ be a $B$-module. Let $P \to B$ be an object of $\mathcal{C}_{B/A}$ (Section 92.4). Consider the extension of principal parts
see Algebra, Lemma 10.133.6. This sequence is functorial in $P$ by Algebra, Remark 10.133.7. Thus we obtain a short exact sequence of sheaves of $\mathcal{O}$-modules
on $\mathcal{C}_{B/A}$. We have $L\pi _!(\Omega _{\mathcal{O}/\underline{A}} \otimes _\mathcal {O} \underline{M}) = L_{B/A} \otimes _ B M = L_{B/A} \otimes _ B^\mathbf {L} M$ by Lemma 92.4.2 and the flatness of the terms of $L_{B/A}$. We have $L\pi _!(\underline{M}) = M$ by Lemma 92.4.4. Thus a distinguished triangle
in $D(B)$. Here we use Cohomology on Sites, Remark 21.39.13 to get a distinguished triangle in $D(B)$ and not just in $D(A)$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)