Lemma 61.26.4. Let $j : U \to X$ be an open immersion of schemes. Then $\text{id} \cong j^{-1}j_!$ and $j^{-1}j_* \cong \text{id}$ and the functors $j_!$ and $j_*$ are fully faithful.
Proof. See Modules on Sites, Lemma 18.19.8 (and Sites, Lemma 7.27.4 for the case of sheaves of sets) and Categories, Lemma 4.24.4. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)