Lemma 52.6.18. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$ be a morphism of ringed topoi. Let $\mathcal{I} \subset \mathcal{O}$ and $\mathcal{I}' \subset \mathcal{O}'$ be finite type sheaves of ideals such that $f^\sharp $ sends $f^{-1}\mathcal{I}$ into $\mathcal{I}'$. Then $Rf_*$ sends $D_{comp}(\mathcal{O}', \mathcal{I}')$ into $D_{comp}(\mathcal{O}, \mathcal{I})$ and has a left adjoint $Lf_{comp}^*$ which is $Lf^*$ followed by derived completion.
Proof. The first statement we have seen in Lemma 52.6.7. Note that the second statement makes sense as we have a derived completion functor $D(\mathcal{O}') \to D_{comp}(\mathcal{O}', \mathcal{I}')$ by Proposition 52.6.12. OK, so now let $K \in D_{comp}(\mathcal{O}, \mathcal{I})$ and $M \in D_{comp}(\mathcal{O}', \mathcal{I}')$. Then we have
by the universal property of derived completion. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: